"FACTOR WORDS" ANSWERS

1. $858 = 2 \cdot 3 \cdot 11 \cdot 13$

1 A

3.3

I

3 C 11 K

2. $32,292 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 13 \cdot 23$

Z

13 M 1 A

3. $330 = 2 \cdot 3 \cdot 5 \cdot 11$

1 A

3 C 11 K

(BECK and BECKA are also acceptable.)

4. $100,000 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$

5 E $2 \cdot 2 \cdot 5$

 $2 \cdot 2 \cdot 5$

5 · 5 Y

5. $152,460 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 11$

5 E 2·11 V

3·3 I 2·7 N

6. $83,538 = 2 \cdot 3 \cdot 3 \cdot 3 \cdot 7 \cdot 13 \cdot 17$

Q

3·7 U 3·3 I 2·13 Z

7. $43,740 = 2 \cdot 2 \cdot 3 \cdot 5$

3 C 3·:

3 C $2 \cdot 2 \cdot 3$

L

5 E

8. $51,129 = 3 \cdot 3 \cdot 13 \cdot 19 \cdot 23$

I

23 W 3.3

13 M

9. $140,625 = 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$

3·5 0 5.5

3·5 0

10. $5800 = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 29$

29 is a prime number, but it is not contained in the prime factorization of the value of any letter.

There are many examples. Any number that contains a prime factor larger than 23 will be unable to represent a word.